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Computer simulations of cathodeless, high-brightness electron-beam production
by multiple laser beams in plasmas
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The use of two crossed laser pulses in a plasma for the cathodeless production of high-current low-emittance
electron beams@D. Umstadter, J. K. Kim, and E. Dodd, Phys. Rev. Lett.76, 2073~1996!# is examined with
fully relativistic, two-and-a-half-dimensional particle-in-cell simulations. Estimates for the number of injected
particles, their energy spread, and their emittance are given as functions of the amplitude and timing of the
injection pulse relative to the drive pulse of the laser wake field accelerator. The physical mechanism of the
trapping of particles is examined based on single particle phase space trajectories in the simulations and
numerical calculations.@S1063-651X~98!08405-0#

PACS number~s!: 52.40.Nk, 41.75.Lx, 52.65.Rr
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INTRODUCTION

Recently Umstadter, Kim, and Dodd@1# proposed the use
of two orthogonal laser pulses in a plasma to trap and ac
erate an ultrashort bunch of electrons. As envisioned, the
~or drive! pulse creates a plasma wave which is below
self-trapping or wave-breaking threshold. The transve
ponderomotive force of the second~or injection! pulse was
argued to give electrons an extra kick forward in the wa
direction, enabling them to be trapped and accelerated in
wake of the drive pulse. This geometry is illustrated in F
1. Such a cathodeless injector~or perhaps more correctly,
plasma cathode! is of interest for a wide variety of applica
tions including an injector for future linear accelerator tec
nologies with short wavelength accelerating structures
source of short pulses of light or x rays, or a source of el
tron bursts for pulsed radiology and ultrafast pump-pro
chemistry@2#. For plasma accelerator applications in partic
lar, the scheme naturally overcomes problems of synchro
ing the injector with the accelerator. Moreover, the rap
acceleration of the bunch in the plasma~order of 10–100
GeV/m! @3–6# minimizes the effect of space charge th
would be severe for such dense beams (1014– 1018 cm23)
produced from a conventional thermionic photocathode@7#.

The original analysis of Ref.@1# used single particle
theory and estimates based on one-dimensional~1D!
particle-in-cell ~PIC! simulations. In this paper, we prese
results from a detailed 2D PIC simulation analysis of t
concept. We find that our results support the feasibility
such a cathodeless injection scheme, but that in the reg
studied here the physical mechanism for the trapping is
ferent from the one originally suggested. Furthermore,
show that the number of particles, the emittance, and
energy spread can all depend sensitively on the laser pa
eters and the injection phase. Depending on the applicati
these results place constraints on the allowable shot to
jitter of the injection laser. Finally based on insight into t
trapping mechanism, we put forth additional geometri
571063-651X/98/57~5!/5920~9!/$15.00
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e.g., copropagating and counterpropagating pulses, as we
related injection schemes.

REVIEW OF PARTICLE DYNAMICS

We next briefly review the dynamics of electrons in re
tivistic plasma waves because the paper bridges two fie
beam and plasma physics. Consider an electron being a
erated in a plasma wave of the form

f5f0~12x2
2/wp

2!sin@kp~x12nft !#, ~1!

where nf is the phase velocity of the wave, andwp is a
parameter describing the width of the plasma wave. T
potential describes the behavior of particles close to the c
ter of a typical plasma wave. We assumenf>c, i.e., rela-
tivistic plasma waves. The subscripts 1 and 2 refer to dir

FIG. 1. Geometry of the cathodeless injector concept@1#. The
injection phase of the injection pulse is defined by the dista
between the trailing edge of the drive pulse and the center of
injection pulse when it crosses the drive pulse.
5920 © 1998 The American Physical Society
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tions parallel and perpendicular, respectively, to the plas
wave’s direction of propagation. The equations of motion
an individual electron are

d

dt
p152eE15ef0kp~12x2

2/wp
2!cos@kp~x12nft !#,

~2!

d

dt
p252eE2522ef0

x2

wp
2 sin@kp~x12nft !#. ~3!

The acceleration of single electrons in these fields has b
studied extensively@8–10#. An injected electron accelerate
along the axis,x150, will be trapped if its injection energy
~the initial kinetic energy! exceeds the trapping thresho
@8,10,11#

Wi'mc2~gf
2 $f̄011/gf2bf@~f̄012/gf!f̄0#1/2%21!

with f̄05ef0 /~mc2!, ~4!

which reduces to1
2 @f̄01(1/f̄0)#21 asgf→`.

Once trapped, an electron is accelerated, and its sp
eventually exceeds the phase velocity of the wave. The
celeration process ceases after the electron outruns the
and encounters decelerating forces. Ifx250, then the maxi-
mum energy gain is@3,8,10,11#

Wf2Wi[DW>2gf@11hf̄0gf#mc2, ~5!

whereh is 2 if the particle slips through a fullp phase of the
accelerating bucket.DW is approximately 2hf̄0gf

2 mc2 if
f̄0gf@1. The dephasing distance can be estimated by
culating the distance it takes for the electron moving at
speed of light,c, to move forward a half wavelength in
wave moving atnf>c. This gives@8,10,11#

Ldp5
1
2 hgf

2 lp5hpgf
2 c/vp . ~6!

An electron which is not on the axis,x2Þ0, will also
experience transverse, i.e., defocusing or focusing fields
given by Eq.~3!. Electrons in the defocusing phase of t
wave accelerate away from the axis, and are eventually
@8–10#. Electrons in the focusing phase execute betatron
cillations ~in x2! as they accelerate alongx1 , so only elec-
trons which reside in both focusing and accelerating fie
are accelerated to the dephasing limit@8–10#. These fields
arep/2 out of phase, and therefore only a quarter of a plas
wave wavelength can be used for acceleration. This redu
the maximum energy gain and the dephasing length gi
above by roughly a factor of 2@i.e., h51 in Eq. ~5!#. In
finite-width plasma waves, additional second order focus
terms may extend the range of phases which have both
cusing and accelerating forces@12,13#.

An accelerated beam is characterized by its energy
normalized emittance«n where«n is a measure of the area o
the beam in transverse phase space. Note that Eq.~3! has the
adiabatic invariantp2x2 for each individual particle. For a
relativistic beam~i.e., g@1!, this area is given by the prod
uct of the beam’s transverse spot sizes, angular divergence
u5p2 /p1 , and energy,g>p1 /mc; therefore«n5pgus,
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and it is conserved under ideal conditions. The evolution
the beam’s spot size is described by the envelope equa
@14#

d2

dx1
2 s1

1

g

dg

dx1

ds

dx1
2S «n

p D 2 1

g2s3 F11
2p2

g S s

«n
D 2 1

I A

2
gvB

2s4

c2 S p

«n
D 2G50, ~7!

where I is the beam’s current,I A>mc3/e, is the Alfven
current,s0 is the initial spot size, andvB

252uf̄0uc2/wp
2 is

the betatron frequency for the potential given by Eq.~1!. The
first term in the large square bracket is due to diffraction,
second term is due to self-space-charge, and the third ter
due to the external focusing forces~i.e., of the plasma wave!,
respectively.

The parameter characterizing the ratio of the space ch
term to the diffraction term in the beam envelope equation
given by

r5
2p2

g S s2

«n
2 D I

I A
. ~8!

If the effects of space charge can be neglected, then
equilibrium state of a matched beam~s does not change
during the acceleration! can be obtained by balancing th
two remaining force terms. These two terms are the one a
ing from the diffraction, and the transverse external for
term. The external force term can be related to the amplit
E10 of the accelerating electric field of the plasma wav
which is a quantity we observe in our simulations, i.e.,f0
52E10/kp . The resulting condition for a matched beam

1

4p2g

mcvp

eE10
S «n

s D 2S wL

s D 2

51. ~9!

Here we also replacewp with wL /&, wherewL is the laser
spot size because the transverse profile of the longitud
field of the plasma wave is proportional to the transve
profile of the laser intensityE10}EL

2, since the ponderomo
tive force of the laser pulse causes the plasma wake@9,15#. If
the expression on the left side of the equation is larger t
unity, the focusing forces dominate the diffraction.

An estimate of the upper limit of the emittance of a bea
in cathodeless injection schemes can be found from the
ceptance@16# of the plasma wave. The acceptance is t
transverse phase space volume that can be accelerated b
system. For a plasma wave the acceptance can be app
mately calculated by assuming a transverse potential pro
that is responsible for the focusing forces of the plas
wave. For a given transverse potential,f2[f0(12x2

2/wp
2),

we can find the maximum transverse momentump2 that a
particle can have at a given transverse positionx2 before the
particle can escape the potential well. Since the plasma w
as well as the particle both move with almost the same
locity c, the potential functionf2 will change slowly, and
we will neglect that change here.

We start with the condition that an electron is trapp
transversely in the plasma wave’s potential well, i.e., that
transverse kinetic energy has to be smaller than the en
needed to escape the transverse potentialuEk,2u,uEp,2u,
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Ap2
2c21p1

2c21m2c42Ap1
2c21m2c4,2ef2 ~f2<0!.

This can be solved, giving an inequality for thep2 of a
trapped electron:

up2uc,A~2ef21Ap1
2c21m2c4!22m2c42p1

2c2.

Rearranging terms gives the following result:

up2u,mcS 2
2ef2g1

mc2 D 1/2S 11
2ef2

2mc2

1

g1
D 1/2

[p2,max~x2!,

~10!

whereg1
2511(p1 /mc)2.

For linear wavesf̄25ef2 /(mc2)<1/2; so to lowest or-
der the second square root term can be approximate
unity. We use Eq.~10! to calculate the normalized acce
tance@16#

An52E
2`

` p2,max

mc
dx252E

2`

` A22mef2g1

mc
dx2 .

~11!

Assuming the potential given in Eq.~1!, and replacingwp
with wL /&, we obtain an approximate result forAn by re-
placing the integration limits withwL /& and2wL /&:

An52A2mef0 cos~a!g1

1

mc E2wL /&

wL /& S 122
x2

2

wL
2D 1/2

dx2

52pwLAg1f̄0Acos~a!, ~12!

where a is the phase of the electron in the wave w
respect to the potential maximum. If we assumeg1 is of the
order of the trapping threshold, thenf̄0g15O(1), so«n for
any cathodeless injection scheme is bounded by«n
,2wLp. If the trapping of a particle bunch by a plasm
wave does not take place at the maximum of the poten
then cos~a! is smaller than 1 and the emittance of the be
can be expected to be smaller than this upper bound. N
that if Eq. ~9! is solved for «n , then it results in«n

52pAgeE10/(mcvp)(s/wL)2s. Using g'g1 , f̄05

ekp
21E10/(mc2), and s5wL leads to «n52pwLAg1f̄0.

This means that the acceptance is the emittance fo
matched beam.

SIMULATION RESULTS

The simulations are conducted with the single node v
sion of the fully relativistic two-and-a-half-dimensional PI
codePEGASUS@17#. This code uses a simulation box whic
moves with the speed of light, and can therefore follow
laser pulse for extended periods of time. Even though
simulation box moves, all calculations are done in the r
frame of the plasma.PEGASUS uses the charge conservin
algorithm inISIS, and solves locally forE andB fields. Fig-
ure 1 shows the basic setup of the simulations. The follow
parameters are valid for most of the simulations results p
sented below, unless stated differently. The simulation
has a size of 35c/vp in the x1 direction, and 25c/vp in the
x2 direction, and the simulations run for a time of 105vp

21.
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The simulations use a 7003500 grid, a time stepdt
50.035vp

21, and four particles per cell.
As the drive pulse starts to move in thex1 direction into

the cold plasma, it creates a plasma wave in its wake. Th
due to the ponderomotive force of the drive pulse and i
the basis for the laser wake field accelerator~LWFA!
@3,6,15#. At a later time the injection pulse is launched in
vacuum region at the side of the box and propagates in thx2
direction, crossing the path of the drive pulse. The freque
ratio v0 /vp between the laser frequency and the plasma
quency is 5 for both pulses, and both have their polarizat
in the plane of the simulation.~This means the drive puls
has mainly anE2 component and the injection pulse main
an E1 component.! We adopt the notation in Ref.@1#, where
the normalized vector potential for the drive pulse isa
[eAy /mc251, and for the injection pulse isb[eAx /mc2

52, unless stated otherwise. We observed in the simula
that the plasma wave amplitude caused bya51 is about
f̄050.45. The transverse profile for each laser is given b
Gaussian with a spot size of 3c/vp . The temporal profile has
a symmetric rise and fall of the formf (x)510x3215x4

16x5 with 0<x5t/tL<1. The value oftL is pc/vp for the
drive pulse and1

2 pc/vp for the injection pulse; thus the
simulations have fewer laser cycles than in typical expe
ments. We define the injection phasec to be the distance
between the back of the drive pulse and the center of
injection pulse as it crosses the axis. This is shown in Fig

In order to convert the simulation results to physical un
we assume a plasma density of 1016 cm23. If not stated dif-
ferently, all quantities are given in normalized Gaussian un
with the plasma frequency equal to 1. The number of acc
erated electrons is estimated from the simulations as follo

N5
Number of trapped simulation particles

Number of particles per cell

3ndx1dx2Dx3@~mc2!/~4pe2n!#3/2. ~13!

Heren is the electron density in cm23, dx1 anddx2 are the
cell sizes in thex1 andx2 directions, andDx3 is an assumed
extension in thex3 direction,dx1 , dx2 , andDx3 are in nor-
malized units. We assumeDx3 to be equal toDx2 , the width
of the group of accelerated particles inx2 , which assumes
cylindrical symmetry for the accelerated beam. The norm
ized emittance is calculated as

«n5g
Dp2

p1
Dx2@~mc2!/~4pe2n!#1/2

with g5Ap211'p1 . ~14!

Herep1 is the average longitudinal momentum, andDp2 and
Dx2 are the width of the distributions ofp2 and x2 for the
group of accelerated particles. It should be noted that
number of electrons as well as the normalized emittance b
scale withn21/2. All quantities, including the energy sprea
are calculated after the final time step of the calculation, i
after a propagation distance of 105c/vp @particles are
trapped,g.gf , between 50 and 60c/vp—see Fig. 4~a!#.
The values ofDx2 and Dp2 are defined to be the standa
deviations of the particle bunches for these quantities. T
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57 5923COMPUTER SIMULATIONS OF CATHODELESS, HIGH- . . .
energies of the trapped particles are around 10 MeV, wh
is of the order of the theoretical energy gainDW516 MeV
@Eq. ~5!, with h51, f̄050.45, andgf55# that would be
obtained over the dephasing distance of 80c/vp @Eq. ~6!#.
The trapping threshold for these simulations is 0.05 M
@Eq. ~4!#. The simulations show that trapped particles st
close to the maximum accelerating gradient, which is con
tent with the result above.

The engineering results of the simulations are summ
rized in Fig. 2. In Fig. 2~a!, we plot the number of trappe
electrons, the emittance, and the energy spread as a fun
of the injection phase for a fixed value of the injection a
plitude,b52.0. In Fig. 2~b!, we plot the same quantities as
Fig. 2~a!, but as a function of the injection amplitude for
fixed value of the injection phase,c51.3p. All other param-
eters have the values given before. Note that negative va
for c mean that the center of the injection pulse crosses
x2 axis before the end of the drive pulse.

The most notable feature of Fig. 2~a! is the large variation
of the three beam quantities as a function ofc, and espe-
cially the strong difference in the number of particles a
their emittance between positive injection phases larger
smaller thanp. The direct overlap of the injection pulse wit
the drive pulse~i.e., an injection phase smaller thanp!
clearly yields the largest number of trapped particles. T
maximum number of trapped electrons corresponds to
3108 at a plasma density of 1016 cm23 ~or to 63107 at a
density of 1019 cm23!. Note that 100% beamloading@18#
corresponds toN553105f̄0An0cm3A cm22'83109 for
n051016 cm23, where we use a laser beam cross section
A5pwp

2 with wp5wL /&5(3/&)c/vp . Therefore, there is
<10% beamloading for negative and<1% positive injec-
tion phases.

The number of particles decreases by an order of ma
tude for injection phases larger thanp. The normalized emit-
tance, on the other hand, is better for injection phases la
thanp, with the smallest normalized value of 3p mm mrad
in a 1016-cm23 density plasma~or 0.1 p mm mrad at
1019 cm23!. Note, from Eq.~12!, that the acceptance for th
plasma wave places an upper bound on the emittanc
2wLp5300p mm mrad forn051016 cm23. However, since
the particles are trapped at a phase close to the maxim
accelerating phase of the plasma wave~i.e., close to a zero
for the focusing field!, the cos term in Eq.~12! is small. We
therefore expect the emittance to be smaller than this up
limit. For injection phases smaller thanp, the emittance in-
creases by a factor of 5. The emittance therefore seem
grow with the number of particles. Although this is sugge
tive of some sort of space charge degradation, we will sh
later that space charge is not important. Instead, we bel
that the relatively larger emittance and number of particle
smallerc are both due to a stochastic interaction between
plasma and the overlapping laser fields.

The energy spread of the accelerated bunch also va
widely; it is between 2% and 17% at a beam energy of
MeV, and we expect the energy spreadDE/E to scale as 1/g
for simulations with larger dephasing energies~i.e., larger
values ofv0 /vp!, sinceDE/E}DE/g, and DE is not ex-
pected to change significantly. There is an interesting dif
ence between the behavior of the energy spread and the
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ber of particles on the one hand, and on the emittance on
other hand, for the larger injection phases in Fig. 2~a!. The
energy spread, and to some extent the number of partic
fluctuate as a function ofc. The emittance remains almos
constant which suggests that it is determined by qualities
the accelerating plasma wave and not by details of the in
tion process like the injection phase.

Although the simulations withb52.0 produce similar
numbers of particles atc51.3p or 1.8p, as can be seen
from Fig. 2~a!, for b51.8 the number of particles change
from a 108 at c51.3p @see Fig. 2~b!# to nearly zero atc
51.8p ~data not shown in figures!. This indicates that the
results of the simulations are quite sensitive tob and c, so
that the curve found in Fig. 2~a! for the injection phase de
pendence at injection amplitudes of 2.0 is not readily ap
cable to other values of this parameter.

The value ofc51.3p is used for the simulations of Fig
2~b! since it seems to be close to an optimal injection pha
judging from the data of Fig. 2~a!. As a function of the in-
jection amplitude, the normalized emittance and the ene
spread do not seem to show any systematic behavior on
scale that is resolved by the simulations. The values of
energy spread vary between 4% and 18%, while the va
for the emittance are between 10p and 40p mm mrad. De-
pending on the application, these variations will place a lim
on the tolerable shot to shot laser jitter.

The number of trapped electrons, on the other ha
seems to show a systematic behavior. What should be
pected is that the number of trapped particles first rises w
increasing injection amplitude and then falls off. This is re
ognizable in the figure, even though the curve is quite no
The decrease with an increased amplitude causes an inc
in transverse momentum,P2 , that is transferred to the par
ticles by the injection pulse. At a certain value, the transve
momentum becomes large enough to prevent the trappin
the particles.

We may use Fig. 2~a! and Eqs.~13! and~14! to obtain an
interesting scaling law for the brightness of the plasma ca
ode injector. The normalized brightness can be defined
Bn5I /«n

2 @16# for axially symmetric beams. For the averag
current of a bunch, we findI}N/Tp5Nvp , whereTp is the
plasma wave period. As noted earlier,N scales withn21/2,
while vp scales asn1/2. Therefore, the productNvp does not
depend on the density as the simulation results are scale
different densities for fixed values ofv0 /vp , a, andb. For
example, atc51.8p, we obtainI max5220 A and«n511p
mm mrad@(1016 cm23)/n#1/2 which scales asn21/2. Com-
bining these results predicts a brightness ofBn51.8
3107n/~1016 cm23!A/cm2, which scales linearly with den
sity.

The insensitivity of the beam current to the plasma d
sity should also hold ifvp , a, andb are changed. This can
be argued as follows. The beam current can be written aI
5enbcs2p, wherenb is the beam density. If we normaliz
nb with respect to the plasma densityn0 and the spot sizes
with respect toc/vp , we find that

I 5en0c~pc2/vp
2!

nb

n0
~sc/vp!25

I A

4

nb

n0
~sc/vp!2.

~15!
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FIG. 2. ~a! The number of trapped electrons, the normalized emittance, and the energy of the trapped particles as a functio
injection phase. The injection amplitudeb is 2.0, and the drive amplitudea is 1.0. The connecting lines between the data points have b
added to make it easier to distinguish the different data. The inset shows the raw data for the transverse phase space of the trapp
that is used to calculated the emittance for the simulation atc51.8p. ~b! The number of trapped electrons, the normalized emittance,
the energy spread of the trapped particles as a function of the injection amplitude. The injection phasec is 1.3p. All other parameters are
the same as the ones used in the simulations of~a!. The connecting lines between the data points have been added to make it ea
distinguish the different data.
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This expression forI is insensitive to the plasma density fo
various laser parameters, if the normalized beam density
the spot size are relatively insensitive to the plasma den
We expect that the rationb /n0 is not a strongly varying
function ofgf5v0 /vp , since the trapping threshold asym
totes for largegf @see Eq.~4!#. Note also that sincenb /n0 is
nd
y.

typically less than 1 ands is typically c/vp or less, this
shows that the current is typically some fraction of the A
fven current.

It is interesting that despite their high brightness and d
sity, the bunches are not space charge dominated. From
discussion above,I /I A is of the order of 1022, while (s/«n)2
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is typically of order unity. Thus, using Eq.~8!, we find that
r!1 at all times in the plasma, and the beam is emitta
dominated. We note that once the bunch leaves the pla
and expands in free space, it can rapidly become sp
charge dominated. For beams generated by the cathod
injection scheme, this typically occurs in a distance of
order of 1 cm3@(1016 cm23)/n#1/2. Since the effects of
space charge can be neglected, it is possible to apply Eq~9!,
the condition for matched beams. For the simulation para
eters, the left side of Eq.~9! has values between 2 and
which means the external force term is larger than the
fraction term. For the beam emittances in the simulations,
also note that«n is between 0.01 and 0.12 times the plas
wave acceptance that was calculated above. The numbe
the matched beam condition and the emittance to accept
ratio indicate that once the electrons are ‘‘injected’’ they a
well within the parameters of stable acceleration for
plasma wave.

To achieve high energies in the LWFA the laser pu
must propagate through many diffraction or Rayleigh leng
of plasma. One way to guide a pulse is to use a parab
density channel@19,20#. Therefore the cathodeless injectio
scheme may need to work in plasma channels. We have
ried out a simulation in which the drive pulse propaga
down a channel and the injection pulse propagated acros
channel. The channel had a width of 3.25c/vp and the den-
sity was decreased by 40% in the middle of the channel
the simulation the number of trapped particles as well as
emittance of the particle bunch are reduced to about 2
from their values in the uniform plasma case. We also n
that in all results presented in this paper the plasma is c
We have done simulations with a 1-KeV plasma, and
number of electrons as well as the emittance decreas
about 40% of the cold plasma values.

Insight into the mechanism of trapping can be gained
studying the original location and trajectories of the trapp
particles. In Fig. 3, we plot the original (x1 ,x2) positions for
all the trapped particles from two simulations. The red poi
are forc51.8p andb52.0, while the blue points are for
c51.3p and b51.8. There are several important points
be noted. The first is that for both cases the particles ar
the left of the injection pulse. Therefore, these particles
perience a transverse ponderomotive force to the left no
the right, as was presumed in Ref.@1#. We have verified this
by rerunning the simulations without the drive pulse to s
only the effect of the injection pulse.

To gain a deeper understanding of the process, we fol
the momentum of a single, typical, trapped particle as fu
tion of time in the 2D simulation. We consider a particle f
the case ofc51.3p andb51.8. The data are shown in Fig
4~a!. The initial momentum is zero, since the simulation us
cold plasma. Here we show the results for only one parti
but the curves are very similar for other trapped parti
phase space trajectories in this simulation.

The solid curve in Fig. 4~a! shows the longitudinal mo
mentum of the particle; the dotted curve showsp1 for the
same particle in a simulation where the injection pulse is
launched. As expected, the same particle simply oscillate
the wake of the drive pulse. In the full simulation, we can s
that the injection pulse has completely passed by the
particle at about the timet531.7. Although the injection
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pulse has an impact on the particle, the really large chan
occur later at a time when the injection pulse has already
the area of the test particle. This indicates that the trap
particle receives the extra momentum needed for becom
trapped from the interaction of the two plasma wake fie
created by these pulses, rather than from any effect dire
related to the laser pulses~since those have already left th
area of the particle!. Note that the trapped particle goe
through one full oscillation~accelerating, decelerating, an
accelerating again! before it is trapped. This feature, that th
particles become trapped in a multistep proce
~acceleration-deceleration-acceleration! caused by the inter-
action of the wake fields, is not unique to this particu
simulation. Other simulations with different values forc and
b showed the same process.

Figure 4~b! shows theE1 field at t542.0. The blue areas
accelerate, while the red areas decelerate electrons with
spect to thex1 direction. The green cross marks the positi
of the test particle shown in Fig. 4~a! at that time. The posi-
tion of the particle in this picture is consistent with the d
velopment ofp1 in Fig. 4~a!. The particle is at the edge o
the accelerating area, and will slip back into the decelera
area. The field magnitude of the decelerating area is cle
smaller than that of the accelerating area. The spatial st
ture of theE1 field seen in this figure can qualitatively b
understood as mainly a superposition of the longitudinal fi
of the drive pulse wake and the transverse field of the inj
tion pulse wake.

The question that arises at this point is whether this eff
is mostly a linear effect that arises from the superposition
the two plasma waves, or whether it is essentially a nonlin
effect arising from the interaction of the two plasma wav
mediated by the plasma. To address this question, we s
the results of non-self-consistent 2D simulations and 1D
merical calculations~Fig. 5!. The 2Df non-self-consisten
simulations are done by turning off the field solver of t
PEGASUScode, and instead calculating the fields of the las
and their wakes analytically from linear theory at each tim
step@15#. As a result, it is possible to follow test particles
the fields caused by the linear superposition of the two la
pulses and their wakes. In a second non-self-consistent
simulation, the injection pulse is neglected while the line
wake it produces is not.

The 1D numerical calculations use the following elect
fields for the wakes to calculate the trajectory of a partic

Wake from the drive pulse:

ED5ED,max sin~kpx2vpt2w0!. ~16!

Wake from the injection pulse:

EI5EI ,max2e1/2 sin~vpt !x/w0e22~x/w0!2
. ~17!

These equations follow from the ones used for the non-s
consistent 2D simulations. The laser fields are also omi
in this 1D calculation. The initial conditions of the partic
are given by its position in the plasma wave described by
~16!. ED,max and El ,max are taken as 0.45 and 0.35, sin
these are the values seen in the self-consistent calcula
with c51.3p and b51.8. For the 2D non-self-consisten
simulations, the laser amplitudes are slightly adjusted
yield those values, too. All other parameters of the non-s
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FIG. 3. ~Color!. The figure shows the initial
position of trapped particles for two different
simulations. The red particles come from a simu-
lation with c51.8 andb52.0. The blue particles
come from a simulation withc51.3 and b
51.8. The position of the drive pulse in the figure
is illustrative and does not matchc51.3 or c
51.8.

FIG. 4. ~a! p1 of a test particle as a function
of time. The two curves are the results from
simulations with~solid! and without~dashed! an
injection pulse. c51.3p and b51.8 for the
simulation with an injection pulse. The initial po-
sition of the test particle is given by offsets of
22.3 in x1 and 20.1 in x2 relative to the inter-
section of the pulses~see Fig. 3!. The vertical line
in the figure indicates the timet542.0 at which
the electric fields are given in~b!. ~b! ~Color!.
The fieldE1 field at the timet542.0 for c51.3
and b51.8. The cross indicates the position of
the test particle shown in~a!.



57 5927COMPUTER SIMULATIONS OF CATHODELESS, HIGH- . . .
FIG. 5. p1 vs time for a particle in a 2D non-self-consistent simulation~solid/dashed! and for a 1D numerical calculation~dotted!. The
1D calculation had the starting parametersx0520.5, w0521.5, andw05
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consistent 2D simulations and the 1D calculations are
same as in the self-consistent simulation withc51.3p and
b51.8, unless stated otherwise.

The results of these idealized models can be seen in
5. The linear superposition of two crossed plasma wa
~solid line! creates conditions under which particles g
trapped. On the other hand, the actual development op1
after the injection pulse has passed the particle looks dif
ent from the self-consistent results, which suggests that
trapping process is modified by the nonlinear interaction
tween the two plasma waves. The multistep trapping d
cussed above seems to be a result of this modification.

The result of the 2D simulation without the injection las
~dashed line! differs strongly from the one with the laser u
to time the injection pulse has passed. After that time the
curves are rather similar, and they differ mainly due to
small displacement of one compared to the other along
time axis. Noting that the two curves belong to particles w
a different original position in the simulation suggests th
the effect of the ponderomotive force is to change wh
particles are trapped. Direct comparison of the temporal e
lution between the 1D and 2D results is complicated,
cause the same particles are not trapped. We place the
curve in such a way that it is easy to compare the trajecto
once a particle is trapped. The similarity of this curve w
the curves from the non-self-consistent 2D simulations in
cates that the basic physics of the trapping can be studie
Eqs.~16! and ~17!.

We close this section by commenting that determin
whether the trapping results from a ponderomotive kick
from interfering wakes is important to developing simplifie
models to explain and extend the scheme investigated h
Our results suggest that the trapping is due to the interac
of two plasma waves rather than a plasma wave and a
deromotive kick~impulse!. However, this does not rule ou
the possibility that a different choice of parameters for
injection pulse will result in trapping due to a direct kick b
the transverse ponderomotive force@21#. A possible advan-
tage of the mechanism found in this paper relates to Eq.~15!.
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If the trapping of particles is caused by dephasing them w
respect to the accelerating wake, as we find it here, ra
than from directly increasing their momentum, thennb /n0

could be a much weaker function ofgf5v0 /vp , indicating
that this injection method might also be useful for largergf .

Understanding the trapping mechanism allows one to p
pose and understand other possible geometries. A copr
gating geometry is the easiest to visualize@21#. The second
pulse should be tightly focused to interact with a sing
bucket~or perhaps a few buckets!, and it should be phased t
enhance the original wake to amplitudes above wave bre
ing. In this geometry, the ponderomotive force and the wa
are intimately connected for the first oscillation. However,
subsequent oscillations the interaction of the wakes co
lead to injection. In simulations of this scheme we have o
served an additional trapping mechanism at the plas
boundary. This mechanism might be of interest for expe
ments in which the plasma boundaries are sharp.

A counterpropagating geometry is more complicate
~This scheme differs from a recent idea of Esareyet al. @22#,
which considered a colinear geometry with an intense pu
pulse and two counterstreaming injection pulses!. Once
again a second pulse is focused tightly to interact with onl
single bucket. In this case the injection pulse is phased
reinforce the electrons motion as they move backwar
Therefore, the wake is unequivocally essential in order
the electrons to be trapped as they oscillate forward.

In another possible scenario, a plasma wave mov
across the first wake~other geometries are also possibl!
could be gradually built up over time until a trapping thres
old is reached. This scheme also clearly would rely only
the interfering wakes.

CONCLUSIONS

In this paper, using 2D PIC computer simulations, w
studied the injection scheme recently proposed in Ref.@1#.
We find that the beam brightness and quality compares



on
ha
on
he

ur
on
rta
de
t
e
pt
ar

to
ers.

nd
rk

27,
nt

he
ce

o.

5928 57HEMKER, TZENG, MORI, CLAYTON, AND KATSOULEAS
sonably with that of electron bunches produced using c
ventional technologies. However, we find that the mec
nism for the trapping of particles is not the transverse p
deromotive force of the injection pulse, but rather t
interaction of the particles with the two plasma wakes.

These results open up a number of possibilities for fut
investigations, both to obtain analytical models and to c
sider other injection schemes and geometries. One impo
goal of future research would be to find an analytical mo
of the process that is able to predict the results seen in
simulations. This could then be used to determine fundam
tal limits on beam number and emittance, as well as to o
mize parameters to achieve these limits. Another rese
on
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e
-
nt
l

he
n-
i-
ch

direction is to use higher resolution 2D simulations, and
use 3D PIC simulations with more realistic laser paramet
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