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Computer simulations of cathodeless, high-brightness electron-beam production
by multiple laser beams in plasmas
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The use of two crossed laser pulses in a plasma for the cathodeless production of high-current low-emittance
electron beam§D. Umstadter, J. K. Kim, and E. Dodd, Phys. Rev. L&8, 2073(1996] is examined with
fully relativistic, two-and-a-half-dimensional particle-in-cell simulations. Estimates for the number of injected
particles, their energy spread, and their emittance are given as functions of the amplitude and timing of the
injection pulse relative to the drive pulse of the laser wake field accelerator. The physical mechanism of the
trapping of particles is examined based on single particle phase space trajectories in the simulations and
numerical calculationd.S1063-651X98)08405-0

PACS numbgs): 52.40.Nk, 41.75.Lx, 52.65.Rr

INTRODUCTION e.g., copropagating and counterpropagating pulses, as well as
related injection schemes.

Recently Umstadter, Kim, and Dodd] proposed the use
of two orthogonal laser pulses in a plasma to trap and accel-
erate an ultrashort bunch of electrons. As envisioned, the first
(or drive) pulse creates a plasma wave which is below its We next briefly review the dynamics of electrons in rela-
self-trapping or wave-breaking threshold. The transversdivistic plasma waves because the paper bridges two fields,
ponderomotive force of the secorfdr injection pulse was beam and plasma physics. Consider an electron being accel-
argued to give electrons an extra kick forward in the wakeerated in a plasma wave of the form
direction, enabling them to be trapped and accelerated in the
wake of the drive pulse. This geometry is illustrated in Fig. — —v2iw2) s _
1. Such a cathodeless inject@r perhaps more correctly, a 9= dol1=xplWp)sirtky(x, = w4 W
plasma cathodeis of interest for a wide variety of applica- . , ,
tions including an injector for future linear accelerator tech-WNe€reé v, is the phase velocity of the wave, amg, is a

nologies with short wavelength accelerating structures, Rarameter describing the width of the plasma wave. This

source of short pulses of light or x rays, or a source of elecPotential describes the behavior of particles close to the cen-

tron bursts for pulsed radiology and ultrafast pump-probetﬁ/risct)ila typical plasma wave. We.assumgzc, €., reIa—.

X L . . plasma waves. The subscripts 1 and 2 refer to direc-
chemistry[2]. For plasma accelerator applications in particu-
lar, the scheme naturally overcomes problems of synchroniz-
ing the injector with the accelerator. Moreover, the rapid
acceleration of the bunch in the plasrt@der of 10-100
GeV/m) [3-6] minimizes the effect of space charge that
would be severe for such dense beams{400 cm™3)
produced from a conventional thermionic photocathpde

The original analysis of Ref[1] used single particle
theory and estimates based on one-dimensio(idD)
particle-in-cell (PIC) simulations. In this paper, we present
results from a detailed 2D PIC simulation analysis of this Plasma l———'
concept. We find that our results support the feasibility of
such a cathodeless injection scheme, but that in the regime
studied here the physical mechanism for the trapping is dif-
ferent from the one originally suggested. Furthermore, we
show that the number of particles, the emittance, and the 35 c/o, X,
energy spread can all depend sensitively on the laser param- P
eters and the injection phase. Depending on the applications, F|G. 1. Geometry of the cathodeless injector condapt The
these results place constraints on the allowable shot to sh@fjection phase of the injection pulse is defined by the distance
jitter of the injection laser. Finally based on insight into the between the trailing edge of the drive pulse and the center of the
trapping mechanism, we put forth additional geometriesinjection pulse when it crosses the drive pulse.

REVIEW OF PARTICLE DYNAMICS
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tions parallel and perpendicular, respectively, to the plasmand it is conserved under ideal conditions. The evolution of
wave’s direction of propagation. The equations of motion forthe beam’s spot size is described by the envelope equation

an individual electron are [14]
d - d? +1d'yd0' 8n2 1 1+27720'21
gt P1= ~eE1=edokp(1—xa/wp)cog kp(Xy — w4t ], K I |7 ~ \a) Ta
2
@ 'ywéa'4 m\?
d X2 - C2 8_ :01 (7)
a p2: _eE2: —2€¢0 \/\7 Sir[kp(xl_ V¢t)] (3) n
P where | is the beam’s currenti,=mc®/e, is the Alfven

. L. . 2 Al 4 2 .
The acceleration of single electrons in these fields has bedfiITent, o is the initial spot size, andg=2| do|c*/wj, is
studied extensively8—10]. An injected electron accelerated the betatron frequency for the potential given by Eq. The
along the axisx,=0, will be trapped if its injection energy firstterm in the large square bracket is due to diffraction, the
(the initial kinetic energy exceeds the trapping threshold second term is due to self-space-charge, and the third term is

[8,10,11 due to the external focusing forcé<e., of the plasma waye
o . o respectively.
W, ~mc( yfﬁ{ bo+Lys— Byl (do+ 2/%)4)0]1/2}_ 1) The parameter characterizing the ratio of the space charge
term to the diffraction term in the beam envelope equation is
with ¢o=edo/(me), (4 9ivenby
) — — 272 (o2 |
which reduces tg[ ¢+ (1/¢o)]— 1 asy,—. p=—r\=z| o (8)
Once trapped, an electron is accelerated, and its speed Y \&n) A

eventually exceeds the phase velocity of the wave. The agt the effects of space charge can be neglected, then the
celeration process ceases after the electron outruns the Wa¥Builibrium state of a matched beafar does not change
and encounters decelerating forcesxJ£ 0, then the maxi- during the accelerationcan be obtained by balancing the

mum energy gain i$3,8,10,11 two remaining force terms. These two terms are the one aris-
o — 2 ing from the diffraction, and the transverse external force
Wi = Wi=AW=2yy[ 1+ 7¢oyg]mc, (®  term. The external force term can be related to the amplitude

wherey is 2 if the particle slips through a fult phase of the El‘? of .the accelt_aratmg electric ]‘|eld of 'the p!asmg wave,
which is a quantity we observe in our simulations, i,

. . . 2 .
accelerating bucketAW is approximately Z¢oyyme® if —Ejo/k,. The resulting condition for a matched beam is

$ov4>1. The dephasing distance can be estimated by cal- 5 )
culating the distance it takes for the electron moving at the 1 mcw, <8n) (WL> _1

9

speed of light,c, to move forward a half wavelength in a 472y eEy s
wave moving atv,=c. This gives[8,10,1]

g ag

Here we also replace, with w, /v2, wherew, is the laser
Ldp:%,m,i)\p: 7777720/%- (6) spot size because the transverse profile of the longitudinal
field of the plasma wave is proportional to the transverse
An electron which is not on the axix,#0, will also  profile of the laser intensit§ > EZ, since the ponderomo-
experience transverse, i.e., defocusing or focusing fields, d#/e force of the laser pulse causes the plasma WaKe). If
given by Eg.(3). Electrons in the defocusing phase of thethe expression on the left side of the equation is larger than
wave accelerate away from the axis, and are eventually lostnity, the focusing forces dominate the diffraction.
[8—10Q. Electrons in the focusing phase execute betatron os- An estimate of the upper limit of the emittance of a beam
cillations (in x,) as they accelerate along, so only elec- in cathodeless injection schemes can be found from the ac-
trons which reside in both focusing and accelerating fieldseptance[16] of the plasma wave. The acceptance is the
are accelerated to the dephasing lifi@t-10]. These fields transverse phase space volume that can be accelerated by the
arem/2 out of phase, and therefore only a quarter of a plasmaystem. For a plasma wave the acceptance can be approxi-
wave wavelength can be used for acceleration. This reducesately calculated by assuming a transverse potential profile
the maximum energy gain and the dephasing length givethat is responsible for the focusing forces of the plasma
above by roughly a factor of fi.e., =1 in Eq.(5)]. In  wave. For a given transverse potentiéth= do(1—Xx5/w3),
finite-width plasma waves, additional second order focusingve can find the maximum transverse momentpynthat a
terms may extend the range of phases which have both fgarticle can have at a given transverse positigibefore the
cusing and accelerating forcgg2,13. particle can escape the potential well. Since the plasma wave
An accelerated beam is characterized by its energy ands well as the particle both move with almost the same ve-
normalized emittance, wheree,, is a measure of the area of locity c, the potential functionp, will change slowly, and
the beam in transverse phase space. Note that3has the  we will neglect that change here.
adiabatic invarianip,x, for each individual particle. For a We start with the condition that an electron is trapped
relativistic beam(i.e., y>1), this area is given by the prod- transversely in the plasma wave’s potential well, i.e., that the
uct of the beam’s transverse spot sizeangular divergence transverse kinetic energy has to be smaller than the energy
0=p,/p1, and energy,y=p,/mc; thereforee,=wylo, needed to escape the transverse poteftfig)| <|E, J,
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Vpac?+pic2+mict— \pic2+ mict<—ed, (¢,=<0).

This can be solved, giving an inequality for the of a
trapped electron:

|p2lc<(—ed,+ pic?+mch)2—m?ct— pic?,
Rearranging terms gives the following result:

2e 12 —ep, 1
¢>27’1) (1+ P

mc2 2me y,
where y7=1+ (p;/mc)2.
For linear wavesp,=ed¢,/(mc?)<1/2; so to lowest or-

) = P2 malX2),
(10

|p2|<mc(—

der the second square root term can be approximated asg

unity. We use Eq(10) to calculate the normalized accep-
tance[16]

-

Assuming the potential given in Eql), and replacingw,

with w, /v2, we obtain an approximate result fé, by re-

placing the integration limits withv, /v2 and —w, /v2:
An=2v2megq coda)y; —

I
=27W Vy1¢0VC0S @),

where « is the phase of the electron in the wave with
respect to the potential maximum. If we assugneis of the
order of the trapping threshold, thefyy,=0(1), soe, for
any cathodeless injection scheme is bounded &y

p2,max

= y—2medry;
dx,=2 Td 2

11

X2

1/2
! 1-222] dx
w? 2

wy V2

—w V2

(12

<2w, . If the trapping of a particle bunch by a plasma
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The simulations use a 76000 grid, a time stepdt
=0.O35u‘;1, and four particles per cell.
As the drive pulse starts to move in tiRe direction into
the cold plasma, it creates a plasma wave in its wake. This is
due to the ponderomotive force of the drive pulse and it is
the basis for the laser wake field acceleratbiVFA)
[3,6,15. At a later time the injection pulse is launched in a
vacuum region at the side of the box and propagates irthe
direction, crossing the path of the drive pulse. The frequency
ratio wy/ w, between the laser frequency and the plasma fre-
quency is 5 for both pulses, and both have their polarization
in the plane of the simulatior(This means the drive pulse
has mainly arE, component and the injection pulse mainly
anE; componen). We adopt the notation in Reff1], where
the normalized vector potential for the drive pulseas
A//mc?=1, and for the injection pulse is=eA,/mc?
=2, unless stated otherwise. We observed in the simulation
that the plasma wave amplitude caused &yl is about
$o=0.45. The transverse profile for each laser is given by a
Gaussian with a spot size o€8w, . The temporal profile has
a symmetnc rise and fall of the formfi(x) = 10x3— 15x*
+ 6x° with 0=<x= 7/ 7 <1. The value ofr,_is mc/w, for the
drive pulse and} mcl/w, for the injection pulse; thus the
simulations have fewer laser cycles than in typical experi-
ments. We define the injection phageto be the distance
between the back of the drive pulse and the center of the
injection pulse as it crosses the axis. This is shown in Fig. 1.
In order to convert the simulation results to physical units,
we assume a plasma density of46m™3. If not stated dif-
ferently, all quantities are given in normalized Gaussian units
with the plasma frequency equal to 1. The number of accel-
erated electrons is estimated from the simulations as follows:

Number of trapped simulation particles
Number of particles per cell

X ndx dx,Axs[ (M) (4me?n) %2,

(13

wave does not take place at the maximum of the potential,
then cosa) is smaller than 1 and the emittance of the beanHeren is the electron density in cni, dx; anddx, are the
can be expected to be smaller than this upper bound. Noteell sizes in thex; andx, directions, and\x; is an assumed

that if Eq. (9) is solved for e,, then it results ine,

=2m\yeE/(mcwy) (olw )?o.  Using y=~y1, o=
ek 'Eid(mc?), and o=w leads toe,=27W Vy;¢o.

This means that the acceptance is the emittance for |

matched beam.

SIMULATION RESULTS

extension in thez direction,dx,, dx,, andAxs are in nor-
malized units. We assumixz to be equal ta\x,, the width

of the group of accelerated particles xn, which assumes
gylindrical symmetry for the accelerated beam. The normal-
ized emittance is calculated as

A
=7y —pp2 Ax,[(mc?)/(4me?n)]H2
1

The simulations are conducted with the single node ver-

sion of the fully relativistic two-and-a-half-dimensional PIC
codePEGASUS[17]. This code uses a simulation box which

with y=\p?+1~p;. (14

moves with the speed of light, and can therefore follow theHerep, is the average longitudinal momentum, akg, and
laser pulse for extended periods of time. Even though thé\x, are the width of the distributions qf, andx, for the

simulation box moves, all calculations are done in the resgroup of accelerated particles. It should be noted that the
frame of the plasmaPEGASUSuses the charge conserving number of electrons as well as the normalized emittance both
algorithm inisis, and solves locally foE andB fields. Fig-  scale withn~ 2 All quantities, including the energy spread,
ure 1 shows the basic setup of the simulations. The followingre calculated after the final time step of the calculation, i.e.,
parameters are valid for most of the simulations results preafter a propagation distance of Xw, [particles are
sented below, unless stated differently. The simulation boxrapped,y>y,, between 50 and &@w,—see Fig. 4a)].

has a size of 35w, in the x; direction, and 26/w, in the  The values ofAx, and Ap, are defined to be the standard
X, direction, and the simulations run for a time of LQ}S deviations of the particle bunches for these quantities. The
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energies of the trapped particles are around 10 MeV, whiclver of particles on the one hand, and on the emittance on the
is of the order of the theoretical energy gaiWww=16 MeV  other hand, for the larger injection phases in Fig)2The

[Eq. (5), with =1, 50:0.45, andy,=5] that would be €nergy spread, and' to some extent the number of particles,
obtained over the dephasing distance ot/a§, [Eq. (6)]. fluctuate as a function of. The emittance remains almost

[Eg. (4)]. The simulations show that trapped particles starlI_he accelerati_ng plasr_na wave and not by detalls of the injec-
tion process like the injection phase.

close to the maximum accelerating gradient, which is consis- . . . L
g4 Although the simulations withh=2.0 produce similar

tent with the result above. .
The engineering results of the simulations are summa[]umbers of particles ag=1.3m or 1.8, as can be seen

rized in Fig. 2. In Fig. 2a), we plot the number of trapped from Fig. 2a), for b=1.8 the number of particles changes

electrons, the emittance, and the energy spread as a functi(];rr?m a 10 at y=1.3m [see Fig. )] to nearly zero aty

of the injection phase for a fixed value of the injection am-zl'gﬂ (data not shown in figuresThis indicates that the

. . . . results of the simulations are quite sensitivebt@and ¢, so
plitude,b=2.0. In Fig. Zb), we plot the same quantities as in a v

. X 0 . that the curve found in Fig.(8) for the injection phase de-
Fig. 2a), but as a function of the injection amplitude for a pengence at injection amplitudes of 2.0 is not readily appli-
fixed value of the injection phas¢=1.3m. All other param-  ~gpje to other values of this parameter.

eters have the values given before. Note that negative values The value ofy=1.37 is used for the simulations of Fig.

for ¢y mean that the center of the injection pulse crosses thg(p) since it seems to be close to an optimal injection phase,
X, axis before the end of the drive pulse. judging from the data of Fig.(@). As a function of the in-

The most notable feature of Figi@ is the large variation jection amplitude, the normalized emittance and the energy
of the three beam quantities as a functionypfand espe- spread do not seem to show any systematic behavior on the
cially the strong difference in the number of particles andscale that is resolved by the simulations. The values of the
their emittance between positive injection phases larger andnergy spread vary between 4% and 18%, while the values
smaller thanr. The direct overlap of the injection pulse with for the emittance are between#@&nd 4Gr mm mrad. De-
the drive pulse(i.e., an injection phase smaller than  pending on the application, these variations will place a limit
clearly yields the largest number of trapped particles. Then the tolerable shot to shot laser jitter.
maximum number of trapped electrons corresponds to 8 The number of trapped electrons, on the other hand,
x 10 at a plasma density of #cm™ (or to 6x10" at a  seems to show a systematic behavior. What should be ex-
density of 18° cm™3). Note that 100% beamloadind8] pected is that the number of trapped particles first rises with
corresponds toN=5Xx10°¢\/noC meA cm~2~8x10° for increasing injection amplitude and then falls off. This is rec-
no=10'" cm 3, where we use a laser beam cross section opgnizable in the figure, even though the curve is quite noisy.
A= wwﬁ with w,=w, /vV2=(3V2)c/w,. Therefore, there is The decrease with an increased amplitude causes an increase
<10% beamloading for negative ard1% positive injec- in transverse momentun®,, that is transferred to the par-
tion phases. ticles by the injection pulse. At a certain value, the transverse

The number of particles decreases by an order of magnmomentum becomes large enough to prevent the trapping of
tude for injection phases larger than The normalized emit- the particles. . .
tance, on the other hand, is better for injection phases larger We may use Fig. @) and Eqs(13) and(14) to obtain an
than T, with the smallest normalized value ofr3nm mrad interesting Scaling law for the bl’ightneSS of the plasma cath-
in a 10%-cm™3 density plasma(or 0.1 = mm mrad at ode injector. The normalized brightness can be defined by
10 cm~3). Note, from Eq.(12), that the acceptance for the Bn=1/¢} [16] for axially symmetric beams. For the average
plasma wave places an upper bound on the emittance @urrent of a bunch, we fint<N/T,=Nw,, whereT is the
2w, 77=3007 mm mrad forn,=10'® cm™3. However, since plasma wave period. As noted earliéf,scales withn =172,
the particles are trapped at a phase close to the maximumihile », scales as'/2 Therefore, the produ®tw, does not
accelerating phase of the plasma wdive., close to a zero depend on the density as the simulation results are scaled to
for the focusing field) the cos term in Eq(12) is small. We  different densities for fixed values afy/w,, a, andb. For
therefore expect the emittance to be smaller than this upp&xample, aty=1.8w, we obtainl,,=220 A ande, =117
limit. For injection phases smaller than the emittance in- mm mrad[(10'® cm™3)/n]*2 which scales as~ 2 Com-
creases by a factor of 5. The emittance therefore seems toning these results predicts a brightness Bf=1.8
grow with the number of particles. Although this is sugges-x 10’n/(10*® cm~3)A/cm?, which scales linearly with den-
tive of some sort of space charge degradation, we will shovgity.
later that space charge is not important. Instead, we believe The insensitivity of the beam current to the plasma den-
that the relatively larger emittance and number of particles asity should also hold itv,, a, andb are changed. This can
smallerys are both due to a stochastic interaction between thée argued as follows. The beam current can be writteh as
plasma and the overlapping laser fields. =en,co?m, wheren, is the beam density. If we normalize

The energy spread of the accelerated bunch also variag, with respect to the plasma density and the spot sizer
widely; it is between 2% and 17% at a beam energy of 10with respect tac/w,, we find that
MeV, and we expect the energy spre®H/E to scale as
for simulations with larger dephasing energige., larger
values ofwy/w,), since AE/ExAE/y, and AE is not ex- '_A@
pected to change significantly. There is an interesting differ- 4 ng
ence between the behavior of the energy spread and the num- (15

Np
| =engc(mc?/ w?) e (oclwp)?= (oclwp)?.
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FIG. 2. (&) The number of trapped electrons, the normalized emittance, and the energy of the trapped particles as a function of the
injection phase. The injection amplitutbeis 2.0, and the drive amplitudeis 1.0. The connecting lines between the data points have been
added to make it easier to distinguish the different data. The inset shows the raw data for the transverse phase space of the trapped particles
that is used to calculated the emittance for the simulatiop=at.8x. (b) The number of trapped electrons, the normalized emittance, and
the energy spread of the trapped particles as a function of the injection amplitude. The injectiony hds@r. All other parameters are
the same as the ones used in the simulation&@ofThe connecting lines between the data points have been added to make it easier to
distinguish the different data.

This expression fol is insensitive to the plasma density for typically less than 1 andr is typically c/w, or less, this
various laser parameters, if the normalized beam density arghows that the current is typically some fraction of the Al-
the spot size are relatively insensitive to the plasma densityfven current.

We expect that the ratim,/ng is not a strongly varying It is interesting that despite their high brightness and den-
function of y 4= wq/w,, since the trapping threshold asymp- sity, the bunches are not space charge dominated. From the
totes for largey,, [see Eq(4)]. Note also that since,/ngis  discussion abové/| 4 is of the order of 102, while (o/e,,)?
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is typically of order unity. Thus, using E@8), we find that pulse has an impact on the particle, the really large changes
p<1 at all times in the plasma, and the beam is emittanc@ccur later at a time when the injection pulse has already left
dominated. We note that once the bunch leaves the plasnihe area of the test particle. This indicates that the trapped
and expands in free space, it can rapidly become spadgarticle receives the extra momentum needed for becoming
charge dominated. For beams generated by the cathodeld&gpped from the interaction of the two plasma wake fields
injection scheme, this typically occurs in a distance of thecreated by these pulses, rather than from any effect directly
order of 1cmx[(10' cm 3)/n]Y2 Since the effects of related to the Ias_er pulsésince those have alread_y left the
space charge can be neglected, it is possible to applydgq. area of the particle Note that the trapped particle goes
the condition for matched beams. For the simulation paramthrough one full oscillatior(accelerating, decelerating, and
eters, the left side of Eq9) has values between 2 and 3, acce_:leratlng agajrbefore it is trapped. This fe_ature, that the
which means the external force term is larger than the difParticles become trapped in a multistep process
fraction term. For the beam emittances in the simulations, wéacceleration-deceleration-accelerafimaused by the inter-
also note that, is between 0.01 and 0.12 times the plasma@ction of the wake fields, is not unique to this particular
wave acceptance that was calculated above. The numbers fginulation. Other simulations with different values ipand
the matched beam condition and the emittance to acceptanfeShowed the same process.
ratio indicate that once the electrons are “injected” they are Figure 4b) shows theE, field att=42.0. The blue areas
well within the parameters of stable acceleration for thedccelerate, while the red areas decelerate electrons with re-
plasma wave. spect to thex; direction. The green cross marks the position
To achieve high energies in the LWFA the laser pulsef the test particle shown in Fig(@ at that time. The posi-
must propagate through many diffraction or Rayleigh lengthdion of the parthle in this picture is consistent with the de-
of plasma. One way to guide a pulse is to use a paraboli¥elopment ofp, in Fig. 4(@). The particle is at the edge of
density channel19,20. Therefore the cathodeless injection the accelerating area, and will slip back into the decelerating
scheme may need to work in plasma channels. We have cai€a. The field magnitude of the Qeceleratlng area is clearly
ried out a simulation in which the drive pulse propagategsmaller than th_at of the a}ccel_era_tlng area. The_spatlal struc-
down a channel and the injection pulse propagated across tifée of theE, field seen in this figure can qualitatively be
channel. The channel had a width of 226, and the den- understqod as mainly a superposition of the I_ong|tud|nal_ f[eld
sity was decreased by 40% in the middle of the channel. |,9f the drive pulse wake and the transverse field of the injec-
the simulation the number of trapped particles as well as théon pulse wake. _ _ o _
emittance of the particle bunch are reduced to about 20% The question that arises at this point is whether this effect
from their values in the uniform plasma case. We also notdS mostly a linear effect that arises from the superposition of
that in all results presented in this paper the plasma is coldhe two plasma waves, or whether it is essentially a nonlinear
We have done simulations with a 1-KeV plasma, and theeffeqt arising from the interaction of the_ two plqsma waves
number of electrons as well as the emittance decrease thediated by the plasma. To address this question, we show
about 40% of the cold plasma values. the _results of no_n-self-_con3|stent 2D simulations and_ 1D nu-
Insight into the mechanism of trapping can be gained b)mencal_ calculationgFig. 5). The 2Df non-self-consstent
studying the original location and trajectories of the trappecfimulations are done by turning off the field solver of the
particles. In Fig. 3, we plot the originak{,x,) positions for PEGASU$COde, and mstgaad calcula‘qng the fields of the Ia§ers
all the trapped particles from two simulations. The red points2nd their wakes analytically from linear theory at each time
are for y=1.87 andb=2.0, while the blue points are for a step[lS]. As a result, it is _p055|ble to foII(_)\_N test particles in
#=1.37 andb=1.8. There are several important points to the fields cause_d by the linear superposition of the t_wo laser
be noted. The first is that for both cases the particles are tBUIS€s and their wakes. In a second non-self-consistent 2D
the left of the injection pulse. Therefore, these particles exSimulation, the injection pulse is neglected while the linear
perience a transverse ponderomotive force to the left not ty/ake it produces is not. _ _ _
the right, as was presumed in REE]. We have verified this The 1D numerical calculations use t_he following ele_ctrlc
by rerunning the simulations without the drive pulse to sedields for the wakes to calculate the trajectory of a particle:
only the effect of the injection pulse. Wake from the drive pulse:
To gain a deeper understanding of the process, we follow
the momentum of a single, typical, trapped particle as func- Eb = Eb, max SINKpX— wpt — @o). (16)
tion of time in the 2D simulation. We consider a particle for
the case ofy=1.37 andb=1.8. The data are shown in Fig.
4(a). The initial momentum is zero, since the simulation uses _ 12 —2(xIwg)2
cold plasma. Here we show the results for only one particle, E\=E\ ma2e"™” sinwpt)x/woe™ 0. (7
but the curves are very similar for other trapped particleThese equations follow from the ones used for the non-self-
phase space trajectories in this simulation. consistent 2D simulations. The laser fields are also omitted
The solid curve in Fig. @) shows the longitudinal mo- in this 1D calculation. The initial conditions of the particle
mentum of the particle; the dotted curve shopysfor the  are given by its position in the plasma wave described by Eg.
same particle in a simulation where the injection pulse is not16). Ep ax and E, a5 are taken as 0.45 and 0.35, since
launched. As expected, the same particle simply oscillates ithese are the values seen in the self-consistent calculation
the wake of the drive pulse. In the full simulation, we can seewith =1.37 and b=1.8. For the 2D non-self-consistent
that the injection pulse has completely passed by the tesimulations, the laser amplitudes are slightly adjusted to
particle at about the timé=31.7. Although the injection yield those values, too. All other parameters of the non-self-

Wake from the injection pulse:
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FIG. 3. (Color). The figure shows the initial
position of trapped particles for two different
simulations. The red particles come from a simu-
lation with /= 1.8 andb=2.0. The blue particles
come from a simulation withy=1.3 andb
=1.8. The position of the drive pulse in the figure
is illustrative and does not matc#i=1.3 or
=1.8.

FIG. 4. (a) p; of a test particle as a function
of time. The two curves are the results from
simulations with(solid) and without(dashegl an
injection pulse. y=1.37 and b=1.8 for the
simulation with an injection pulse. The initial po-
sition of the test particle is given by offsets of
—2.3inx; and —0.1 in x, relative to the inter-
section of the pulsesee Fig. 3. The vertical line
in the figure indicates the time=42.0 at which
the electric fields are given ifh). (b) (Color).
The fieldE, field at the timet=42.0 for=1.3
and b=1.8. The cross indicates the position of
the test particle shown ifg).



57 COMPUTER SIMULATIONS OF CATHODELESS, HIGH .. 5927

7 P e e e
F | —— P, (2D W/ laser) //

6 F— — - P, (2D w/olaser) e
AR P, (1D w/o laser) /’ .
L AN

e
g NN
l.\

p, [units of m ¢ ]
W
N
R

3 py
0k 24 £ 'l 3
3 v v

15 20 25 30 35 40 45 50
time [ units of @,']

1
N
3 ~
AR TH IRV CNNTE ANE N1 BT SRR FRTNE ARy

o I
[4)]

FIG. 5. p, vs time for a particle in a 2D non-self-consistent simulatisalid/dashefland for a 1D numerical calculatialotted. The
1D calculation had the starting parametggs- — 0.5, wy= — 1.5, andgg= ‘5‘77.

consistent 2D simulations and the 1D calculations are théf the trapping of particles is caused by dephasing them with
same as in the self-consistent simulation wjthr 1.37 and  respect to the accelerating wake, as we find it here, rather
b=1.8, unless stated otherwise. than from directly increasing their momentum, theg/ng

The results of these idealized models can be seen in Figould be a much weaker function ¢f;= wy/w,, indicating
5. The linear superposition of two crossed plasma wavegat this injection method might also be useful for larggr.
(solid line) creates conditions under which particles get ynderstanding the trapping mechanism allows one to pro-
trapped. On the other hand, the actual developmen;0f pose and understand other possible geometries. A copropa-
after the injection pulse has passed the particle looks differgating geometry is the easiest to visuali2d]. The second
ent from the self-consistent results, which suggests that thﬁulse should be tightly focused to interact with a single
trapping process is modified by the nonlinear interaction bepycket(or perhaps a few buckeétsand it should be phased to
tween the two plasma waves. The multistep trapping disenhance the original wake to amplitudes above wave break-
cussed above seems to be a result of this modification.  ing. In this geometry, the ponderomotive force and the wake

The result of the 2D simulation without the injection laser gre intimately connected for the first oscillation. However, in
(dashed lingdiffers strongly from the one with the laser up sybsequent oscillations the interaction of the wakes could
to time the injection pulse has passed. After that time the tWqead to injection. In simulations of this scheme we have ob-
curves are rather similar, and they differ mainly due to aserved an additional trapping mechanism at the plasma
small displacement of one compared to the other along thgoundary. This mechanism might be of interest for experi-
time axis. Noting that the two curves belong to particles withments in which the plasma boundaries are sharp.
a different original position in the simulation suggests that A counterpropagating geometry is more complicated.
the effect of the ponderomotive force is to change which(This scheme differs from a recent idea of Esasewl.[22],
particles are trapped. Direct comparison of the temporal evowhich considered a colinear geometry with an intense pump
lution between the 1D and 2D results is complicated, bepulse and two counterstreaming injection pujse®nce
cause the same particles are not trapped. We place the ldyain a second pulse is focused tightly to interact with only a
curve in such a way that it is easy to compare the trajectoriesingle bucket. In this case the injection pulse is phased to
once a particle is trapped. The similarity of this curve with reinforce the electrons motion as they move backwards.
the curves from the non-self-consistent 2D simulations indi-Therefore, the wake is unequivocally essential in order for
cates that the basic physics of the trapping can be studied ke electrons to be trapped as they oscillate forward.
Egs.(16) and(17). In another possible scenario, a plasma wave moving

We close this section by commenting that determiningacross the first wakéother geometries are also possjble
whether the trapping results from a ponderomotive kick orcould be gradually built up over time until a trapping thresh-

from interfering wakes is important to developing simplified o|d is reached. This scheme also clearly would rely only on
models to explain and extend the scheme investigated herg,e interfering wakes.

Our results suggest that the trapping is due to the interaction

of two plasma waves rather than a plasma wave and a pon-

deromotlyg .k|ck(|mpuls'e. However, this does not rule out CONCLUSIONS

the possibility that a different choice of parameters for the

injection pulse will result in trapping due to a direct kick by  In this paper, using 2D PIC computer simulations, we
the transverse ponderomotive forf@&l]. A possible advan- studied the injection scheme recently proposed in RHEf.
tage of the mechanism found in this paper relates ta Eg).  We find that the beam brightness and quality compares rea-
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sonably with that of electron bunches produced using condirection is to use higher resolution 2D simulations, and to
ventional technologies. However, we find that the mechause 3D PIC simulations with more realistic laser parameters.
nism for the trapping of particles is not the transverse pon-
deromotive force of the injection pulse, but rather the
interaction of the particles with the two plasma wakes.

These results open up a number of possibilities for future We acknowledge useful conversations with E. Dodd, and
investigations, both to obtain analytical models and to conDr. E. Esarey, Dr. C. Joshi, and Dr. D. Umstadter. The work
sider other injection schemes and geometries. One importamtas supported by DOE Grant No. DE-FG03-92ER40727,
goal of future research would be to find an analytical modeLLNL Contract Nos. B291465 and B335241, and NSF Grant
of the process that is able to predict the results seen in thdo. DMS-9722121. This work was performed under the
simulations. This could then be used to determine fundamerauspices of the U.S. Department of Energy by Lawrence
tal limits on beam number and emittance, as well as to optiLivermore National Laboratory under Contract No.
mize parameters to achieve these limits. Another researcW07405-Eng-48.
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